关灯
护眼
字体:

从大学讲师到首席院士(261)

作者:不吃小南瓜 阅读记录


丁志强带着迷茫回去了。

他知道自己的人生,在这一刻彻底改变了,同时也感觉前途昏暗。

数学系?

那可都是天才的领地,他一个很普通的学生,读数学专业,能有什么前途可言?

未来当个数学老师?

……

王浩并不知道丁志强的迷茫,他还觉得丁志强天赋很不错,最少基础学习的速度很快。

他一心扑在了NS方程的研究上,但是研究到了最后阶段却被卡住了,反应在系统里,就是灵感值的停滞不前——

【灵感值:59。】

王浩已经摸清了规律,S+级任务,20点就是一个研究阶段。

现在只差最后一点,却迟迟的不上涨。

“唉~~”

他长长的叹了口气,思考着突破的方法。

房门响了。

王浩皱眉喊了一声,“进”,就看到周清源站在了门外。

他赶忙站起来说道,“周老师,你怎么来了?”

“你不知道吗?”

周清源走进来惊讶的问道,“昨天可是有个数学界的大新闻。”

“什么新闻?”

“和NS方程有关,你不是在做这个研究吗?《基础数学与应用数学》杂志,刊登了一篇论文,否定了NS方程常规取值下的光滑性。”

“否证了NS方程问题?”

“那倒是没有。”周清源道,“是在允许NS方程解集粗糙的情况下,方程的输出会非常不合理,一定程度上就证明,NS方程解集,很可能不具光滑性。”

王浩思考着说道,“这个逻辑不严谨吧?”

周清源道,“逻辑确实不够严谨,但证明非常严谨,我大致看了一下,没有发现问题。”

“能刊登在《基础数学与应用数学》杂志上,肯定是经过了非常精细的审核,而且论文作者是巴克马斯特,麻省理工大学的教授,偏微分方程应用领域非常有名的专家。”

《基础数学与应用数学》是数学类顶级学术期刊之一,排名长期都在前十行列,还是具有很大权威性的。

王浩皱眉想了一下,摇头坚定道,“我还没有看过证明,但我认为结论肯定是错误的。”

“这和我的研究直接冲突!”

“不可能的!”

“你这么确定?”周清源有些惊讶。

“当然。”

王浩肯定的点头,“这个证明,肯定是哪里有问题,我马上看看。”

第一百六十七章 你还说不是否定他的研究!

巴克马斯特,麻省理工大学教授,‘拉马努金奖’获得者,阿迈瑞肯国家科学院院士。

他是偏微分方程应用领域非常有名的专家,也是公认NS方程研究应用领域的权威,一直致力于NS方程理论应用的研究。

早在五年前,巴克马斯特就开始尝试对于NS方程研究的主要方法是否能够成功,进行了质疑和挑战,并发表了自己和同事一起研究的成果。

当时的成果还不完善,只是论证‘在特定的假设下,NS方程对物理世界的描述的不一致性’。

现在的这篇研究成果,则是在‘允许NS方程解集粗糙’的情况下,证明NS方程的输出不合理,也就是偏差值过大、不具稳定性。

举个例子来说明,比如,某一个参数调整为5,输出的数值是10;参数调整到6,输出的数值变成了60;参数调整到7,输出的数值又变成了11,输出的数值,并没有跟着参数缓慢的变动而变动,而是出现波动较大的情况。

这就是偏差值过大,不具稳定性。

在‘允许NS方程解集粗糙’的情况下,方程输出的数值不具稳定性,一定程度上就可以推断,方程本身也存在不稳定的情况,也就是一定程度上否证了NS方程解集的光滑性。

巴克马斯特本人还接受了采访,他解释道,“光滑解集用来表述物理世界是完备的,但是数学上讲,他们并不一定总是存在。”

“很多时候,我们只能用粗糙解集来对方程进行研究,也就是弱解。”

“就像是进行脸部的素描,每一条线并不一定画在固定位置上,但整体趋向是固定的。”

“如果脸庞的线画在了鼻子上,我们认为,就不是成功的素描,而是出现了低级错误。”

“如果在弱解集上出现这种错误,那么就可以认为,光滑解集,一定程度上,也是不完备(光滑)的。”

巴克马斯特接受采访的解释,逻辑是否合理还是要看个人判断,但他所做的证明却是逻辑严谨的。

王浩下载了论文的原版,仔细看了两个多小时,也没有找出其中的问题。

至于推导细节,能登上数学类顶级学术期刊,要经过两轮的审稿,几乎不可能出现类似的低级错误。

“不可能啊!”

王浩眉头紧皱的思考着,“过程不可能有错,逻辑上也没有问题……”

“难道证明是正确的?”

“这不可能!”

如果巴克马斯特的论证是正确的,就代表他的研究是错误的。

这怎么可能呢?

人脑思维可能出错,但系统对知识灵感的判定,还赶不上巴克马斯特的逻辑严谨吗?

或者说,巴克马斯特超越了系统?

“不可能!”

王浩决心和这篇论文杠上了,他又从头到尾审视了一遍,却依旧找不出任何问题,干脆就建立了个任务——

【任务四】

【研究项目名称:找出巴克马斯特研究的问题(难度:C)。】

【灵感值:0。】

“!!”

“难度C?不愧是NS方程公认的顶级专家啊!”

王浩看着任务难度都被惊住了,他只是找一篇研究论文中的问题,结果难度竟然赶上了一个研究,也怪不得他审视了三个小时,什么也发现不了。

这个问题让巴克马斯特自己来找,估计他自己都找不到吧!

……

巴克马斯特的研究影响力确实很大。

虽然没有到国际数学界震动的程度,但和偏微分方程、NS方程研究有关的学者,都会看他的论文,甚至一些运用到NS方程的学者也都会看他的论文。

包括一些空气动力学,流体力学研究的学者,也包括应用领域的专家。

等等。

巴克马斯特的研究一定程度上否定了NS方程。

事实上,每年都会有很多研究去否定NS方程,但这一次是巴克马斯特,NS方程研究领域公认的顶级专家。

另外,巴克马斯特的论文发表在了《基础数学与应用数学》上,权威期刊自然是有一定说服力的。

再然后,他的论文证明逻辑严谨。

当所有人都没有发现问题,就会感到非常惊奇了,有人甚至提出要根据巴克马斯特的研究,去找到NS方程不平滑的现实例证。

当然大部分人还是冷静的。

很多时候,数学逻辑和物理现实还是存在差异,因为在应用方面来说,只要使用的工具是有效的,并不需要证明它永远有效。

现在还只是数学界的理论研究,论文中也没有百分之百否定NS方程,只是通过对粗糙解集的研究,来论证NS方程可能存在无效的情况。

对王浩来说,情况就不是这样了。

巴克马斯特的研究和他的研究直接冲突,他必须要找到对方的错误之处,否则就等于否定了自己的研究。

王浩去上课了。

上课能大幅度增加灵感值。

C级难度的研究,往往一节课就可能积满100点灵感值,他的课程还是《现代偏微分方程》,和NS方程的研究关联性很强。

这是学期末的最后一堂课。

王浩对内容讲解的非常细致,最后还对于整个课程进行了梳理,让学生们对于课程整体更加的了解。

这能帮助他们对于内容有个深刻的认识,而不只是知道一些基础的数学方法应用。

一堂课,两个课时下来。

【灵感值:37。】

“很少啊!”
上一篇:鼻炎Beta生活手册 下一篇:5G时代

同类小说推荐: