关灯
护眼
字体:

大明1805(897)

作者:王子虚 阅读记录


九十年代中后期,各个半导体厂的实验室里面,就已经搞出了单条1GB的内存条。

只是成本层面仍然不可控,没有办法大批量生产。

而且当时的计算机存取速度有限,如此大规模的内存没有用武之地。

再加上随后出现的互联网泡沫打击了整个产业,直到十年之后市面上才出现了1GB的内存条。

在现在这个时代,朱靖垣这台计算机的内存容量,只能用恐怖来形容了。

闪存芯片方面,在三年前完成了生产验证。

设计和生产出了对应的移动存储设备,包括朱靖垣前世用过的内存卡和优盘。

这些东西被工匠们因地制宜的命名为“手账”,意思是能够拿在手上带在身上的账表数据。

由闪存颗粒构成的硬盘,也就是典型的固态硬盘,也被同步设计出来了。

这种设备被工匠们命名为“快库”,意思是是快速数据仓库。

闪存芯片比内存更加简单粗暴,可以依靠工艺和尺寸硬堆容量,甚至能够超过同时代机械硬盘的容量。

闪存被发明出来之后,随着大明的半导体生产工艺提升,迅速完成了两轮工艺和容量迭代。

现在已经生产出了单颗一亿两千八百万字卦的大颗粒,相当于前世256MB的SD卡。

工匠们把六十四个颗粒堆在一个电路板上,造出了一个八十亿字卦的固态硬盘,相当于前世16G的容量。

这台计算机上还装了两块这种硬盘,硬是堆出了32GB的固态硬盘。

只是速度仍然只有内存卡的级别。

至于此时的机械硬盘,体积也已经缩小到了前世光驱的尺寸。

同时单个机械硬盘的容量,已经达到了一百六十亿字卦,相当于朱靖垣前世的32GB。

朱靖垣这台计算机的中间层装了四块,拥有总共128GB的容量。

与此同时,已经完成研发并升级过一次的最新光驱,也被安装在了这台计算机上。

一张光盘的容量在五亿字卦左右,相当于朱靖垣前世的1GB。

同时也有了类似USB协议的通用串行数据链。

可以插键盘、鼠标、优盘、打印机、录音机、游戏手柄等各种设备。

还有一种比较特殊的大型接口,类似快速插拔的硬盘接口,可以用来插快库固态硬盘。

同时也可以插接游戏卡带。

这台计算机附带了类似前世游戏机的功能。

这个世界的游戏卡带,是朱迪钚在朱靖垣的提醒下设计出来的。

利用闪存颗粒和配套的电路板,烧录好制作出来的游戏程序,插到电脑上就能玩。

暂时没有专门设计游戏机。

朱靖垣这台计算机的性能,已经全面超越了第一代PS游戏机了。

只不过从朱迪钚设计游戏开始,现在只过去了短短四年的时间,计算机的性能一直在跨越式的提升。

朱迪钚并没有开创出太复杂的游戏引擎。

也还没有来得及针对计算机设计真正的大型游戏。

暂时只是做了一些简单的小游戏。

硬件团队倒是完成了专用的三维显示卡设计。

使用和处理器相同的五百纳米工艺生产,核心集成了三百万晶体管,搭配了256MB的专用显存。

最大支持1800×1200的分辨率。

在显示卡和显示设备上,朱靖垣也是专门参与过规则制定,在几个细节上的强调过。

首先是视频输出接口,一定要和所有设备统一。

避免和前世一样,出现一堆乱七八糟的接口,谁家都是一堆不知道通不通用的线材。

还有一堆用途单一的转接口……

朱靖垣前世更喜欢DP接口,只是DP接口一边是平的,反过来插也有可能插进去一个角,有时会发生错位。

所以最终采用了类似HDMI的梯形外观。

不过内部具体的传输标准并不是HDMI,是大明工匠们根据实际情况制定的。

连接在独立显卡上的显示器,是全世界最大的液晶显示器。

把工厂做出来的最大的液晶版,没有分割成几块小尺寸的液晶版,而是直接做成了一整块显示器。

面板尺寸是45厘米×30厘米,分辨率是1800×1200,长宽比是三比二。

对于液晶显示器的尺寸标注,朱靖垣大明的工匠们商量过之后,制定了一个非常简单粗暴的方案。

直接去计算液晶面板的面积,折算成数量级上最为合适的平方分米来表示。

朱靖垣眼前这个显示器总面积十三平方分米左右。

简称“十三分”显示器。

与前世的典型的16比9的显示器相比,宽度与24寸的显示器基本相当,对角线长度与21寸的相当。

六分显示器大概是十四英寸,二十四分显示器大概是三十英寸。

用对角线长度表示液晶显示器尺寸的习惯,是朱靖垣前世最为深恶痛绝的行业惯例之一。

只是因为,最早的显示器,包括电视机和各种仪表显示屏幕,都是圆形的。

所以当时直接用对角线长度表示圆形显示器大小非常合适。

但人的视野是椭圆形的,后来为了方便人类观看,电视机和显示器慢慢变成了方形的。

传统显像管显示器的原理决定了,想要最大化的利用显示原件投放最大的画面,就要让显示器尽可能方正。

继续用对角线表示也还算比较合理。

厂商把显示器做成扁的也不会节省多少成本,甚至还需要舍弃一些边沿的显示效果。

但是进入液晶时代就不同了。

液晶面板本来就是标准的矩形,而且是用一大块面板切割下来的。

可以切出任意长宽比的形状。

在对角线相同的情况下,显示器的长宽比越大,实际的液晶面板总面积也就越小。

这意味着“相同标识尺寸”的实际生产成本会越低。

在使用的面板面积相同的情况下,长宽比越大的显示器对角线越大,折算通用标识尺寸的数字也越大。

这意味着消耗了相同面积的液晶版,最终卖出去的显示器“标识尺寸”变大了。

能够在销售宣传上占据一定的优势。

这样通用的显示器尺寸表示方法,直接推动了着相关产业链一起努力,把显示器的长宽比拉的越来越长。

其中固然有宽屏确实适合娱乐的因素在内,但是最关键的驱动力还是成本控制和边际利润。

朱靖垣为了避免这种不自然的倾向,从源头直接卡死了这个不合理的表示方案。

液晶显示器的尺寸采用与传统显像管显示器完全不同的表示方法。

直接用面积表示,多大尺寸的显示器,就要消耗多大面积的的液晶版,都没有办法在测量和宣传口径上耍滑头。

这不会让厂商为了利润强推更宽的显示器,最终把办公用的显示器也变成扁的。

但也不会阻止厂商生产适合娱乐的宽屏显示器。

在这样的基础上,朱靖垣还和相关工匠们一起,拟定了比较严格的长宽比方案。

设置三个典型的最方便交换切割的比例。

一比一的方屏,二比一的宽屏,三比二的折中通用屏。

液晶显示器现在还没有大规模普及,实验性质的产品暂时只做通用屏幕。

在配套的操作系统上,又设置几个典型的的分辨率。

300×200、600×400用于小型设备。

1200×800、1800×1200、2400×1600用于大型设备。

推动显示器行业按照这些典型分辨率设计产品,方便操作系统在显示效果上做适配。

这同样是基于朱靖垣前世的经验,或者说是已经承受过的痛点。

早期操作系统在缩放上的适配格外的简单粗暴。

最大分辨率就是最佳分辨率,基本没有怎么考虑过缩放的问题。

在早期默认百分之百显示的时代,各种尺寸和分辨率的显示器都能正常显示。

但是到了高分屏时代,拉伸缩放总是出现各种问题。

电脑显示器长宽比和分辨率太复杂,微软自己就算是做好了系统适配,各种第三方软件也是一堆问题。

朱靖垣现在就是提前做好了防备性质的规划。

硬件介绍完了之后,朱靖垣也直接上手,操作了一下计算机上的软件。

同类小说推荐: